Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(9): e19223, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37662778

RESUMO

The vast majority of human transcriptome is represented by various types of small RNAs with little or no protein-coding capability referred to as non-coding RNAs (ncRNAs). Functional ncRNAs include microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), which are expressed at very low, but stable and reproducible levels in a variety of cell types. ncRNAs regulate gene expression due to miRNA capability of complementary base pairing with mRNAs, whereas lncRNAs and circRNAs can sponge miRNAs off their target mRNAs to act as competitive endogenous RNAs (ceRNAs). Each miRNA can target multiple mRNAs and a single mRNA can interact with several miRNAs, thereby creating miRNA-mRNA, lncRNA-miRNA-mRNA, and circRNA-miRNA-mRNA regulatory networks. Over the past few years, a variety of differentially expressed miRNAs, lncRNAs, and circRNAs (DEMs, DELs, and DECs, respectively) have been linked to cancer pathogenesis. They can exert both oncogenic and tumor suppressor roles. In this review, we discuss the recent advancements in uncovering the roles of DEMs, DELs, and DECs and their networks in aberrant cell signaling, cell cycle, transcription, angiogenesis, and apoptosis, as well as tumor microenvironment remodeling and metabolic reprogramming during hepatocarcinogenesis. We highlight the potential and challenges in the use of differentially expressed ncRNAs as biomarkers for liver cancer diagnosis and prognosis.

2.
Molecules ; 27(11)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35684445

RESUMO

The most common primary malignant brain tumors in adults are gliomas. Glioblastoma is the most prevalent and aggressive tumor subtype of glioma. Current standards for the treatment of glioblastoma include a combination of surgical, radiation, and drug therapy methods. The drug therapy currently includes temozolomide (TMZ), an alkylating agent, and bevacizumab, a recombinant monoclonal IgG1 antibody that selectively binds to and inhibits the biological activity of vascular endothelial growth factor. Supplementation of glioblastoma radiation therapy with TMZ increased patient survival from 12.1 to 14.6 months. The specificity of TMZ effect on brain tumors is largely determined by special aspects of its pharmacokinetics. TMZ is an orally bioavailable prodrug, which is well absorbed from the gastrointestinal tract and is converted to its active alkylating metabolite 5-(3-methyl triazen-1-yl)imidazole-4-carbozamide (MTIC) spontaneously in physiological condition that does not require hepatic involvement. MTIC produced in the plasma is not able to cross the BBB and is formed locally in the brain. A promising way to increase the effectiveness of TMZ chemotherapy for glioblastoma is to prevent its hydrolysis in peripheral tissues and thereby increase the drug concentration in the brain that nanoscale delivery systems can provide. The review discusses possible ways to increase the efficacy of TMZ using nanocarriers.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Adulto , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos Alquilantes/farmacologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioma/tratamento farmacológico , Humanos , Temozolomida/farmacologia , Fator A de Crescimento do Endotélio Vascular
3.
Metabolites ; 12(5)2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35629968

RESUMO

Short linear motifs (SLiMs) are evolutionarily conserved functional modules of proteins that represent amino acid stretches composed of 3 to 10 residues. The biological activities of two short peptide segments of human alpha-fetoprotein (AFP), a major embryo-specific and cancer-related protein, have been confirmed experimentally. This is a heptapeptide segment LDSYQCT in domain I designated as AFP14-20 and a nonapeptide segment EMTPVNPGV in domain III designated as GIP-9. In our work, we searched the UniprotKB database for human proteins that contain SLiMs with sequence similarity to the both segments of human AFP and undertook gene ontology (GO)-based functional categorization of retrieved proteins. Gene set enrichment analysis included GO terms for biological process, molecular function, metabolic pathway, KEGG pathway, and protein-protein interaction (PPI) categories. We identified the SLiMs of interest in a variety of non-homologous proteins involved in multiple cellular processes underlying embryonic development, cancer progression, and, unexpectedly, the regulation of redox homeostasis. These included transcription factors, cell adhesion proteins, ubiquitin-activating and conjugating enzymes, cell signaling proteins, and oxidoreductase enzymes. They function by regulating cell proliferation and differentiation, cell cycle, DNA replication/repair/recombination, metabolism, immune/inflammatory response, and apoptosis. In addition to the retrieved genes, new interacting genes were identified. Our data support the hypothesis that conserved SLiMs are incorporated into non-homologous proteins to serve as functional blocks for their orchestrated functioning.

4.
Dent J (Basel) ; 10(4)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35448066

RESUMO

(1) Background: Antibiotics are used in every medical field including dentistry, where they are used for the prevention of postoperative complications in routine clinical practice during the third molar extraction. (2) Methods: This study is reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). The present systematic review aimed to evaluate and systematize the use of antibacterial drugs in order to prevent postoperative complications in outpatient oral surgery for wisdom teeth extraction. We conducted a systematic review using electronic databases such as Medline PubMed, Scopus, and the Cochrane Central Register of Controlled Trials. Considering inclusion and exclusion criteria, we included randomized clinical trials published up to 2021 investigating the antibiotic prescription for third molar extraction. (3) Results: We selected 10 studies after the application of inclusion and exclusion criteria. The results showed that the most widely used antibiotic was amoxicillin both with and without clavulanic acid, in different dosages and duration. There were no statistically significant differences between treatment groups for development of postoperative complications. (4) Conclusions: Based on the analysis of the included studies, penicillin is currently the most widely prescribed group of antibiotics. The widespread use of this antibiotic group can lead to antimicrobial resistance (AMR). Due to increasing prevalence of bacteria resistance to penicillins, clinicians should carefully prescribe these antibiotics and be aware that the widespread use of amoxicillin may do more harm than good for the population.

5.
Int J Cardiol Heart Vasc ; 39: 100990, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35281752

RESUMO

Takotsubo cardiomyopathy (TTS) has become a recognised clinical entity since the Japanese scientist Sato first described it in 1990. Despite an increasing number of confirmed cases, especially during the COVID-19 pandemic, its pathophysiology remains incompletely understood, and decision-making differs in the diagnosis and treatment. In addition, it is not evident whether a significant increase in TTS is due to better understanding among practitioners and widespread access to coronary angiography, or if it is a reflection of an actual increase in incidence. We analysed a series of international research studies from 1990 to 2021. Beyond epidemiology and clinical presentation, we evaluated and summarised fundamental knowledge about various predisposing factors, with particular attention to the iatrogenic impact of certain drugs, namely antidepressants, chemotherapy, and antiarrhythmics. Furthermore, we highlighted the main pathophysiological theories to date. In addition, based on published studies and clinical cases, we investigated the role of numerous diagnostic approaches in the differential diagnosis of TTS and identified predictors of TTS complications, such as cardiogenic shock, ventricular fibrillation, and left ventricular thrombi. Accordingly, we sought to propose a diagnostic algorithm and further treatment management of TTS under the presence of possible complications to help practitioners make more informed decisions, as the initial presentation continues to pose a challenge due to its close similarity to acute coronary syndrome with ST-elevation. In conclusion, this article examines Takotsubo cardiomyopathy from different perspectives and, along with future systematic reviews and meta-analyses, can be of particular interest to practising cardiologists and researchers in developing clinical guidelines.

6.
Biochimie ; 195: 114-134, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34890732

RESUMO

The concept of oxidative distress had arisen from the assessment of cellular response to high concentrations of reactive species that result from an imbalance between oxidants and antioxidants and cause biomolecular damage. The intracellular distribution and flux of reactive species dramatically change in time and space contributing to the remodeling of the redox landscape and sensitivity of protein residues to oxidants. Here, we hypothesize that compromised spatiotemporal control of generation, conversions, and removal of reactive species underlies protein damage and dysfunction of protein degradation machineries. This leads to the accumulation of oxidatively damaged proteins resulted in an age-dependent decline in the organismal adaptability to oxidative stress. We highlight recent data obtained with the use of various cell cultures, animal models, and patients on irreversible and non-repairable oxidation of key redox-sensitive residues. Multiple reaction products include peptidyl hydroperoxides, alcohols, carbonyls, and carbamoyl moieties as well as Tyr-Tyr, Trp-Tyr, Trp-Trp, Tyr-Cys, His-Lys, His-Arg, and Tyr-Lys cross-links. These lead to protein fragmentation, misfolding, covalent cross-linking, oligomerization, aggregation, and ultimately, causing impaired protein function and turnover. 20S proteasome and autophagy-lysosome pathways are two major types of machinery for the degradation and elimination of oxidatively damaged proteins. Spatiotemporal dysregulation of these pathways under oxidative distress conditions is implicated in aging and age-related disorders such as neurodegenerative and cardiovascular diseases and diabetes. Future investigations in this field allow the discovery of new drugs to target components of dysregulated cell signaling and protein degradation machinery to combat aging and age-related chronic diseases.


Assuntos
Envelhecimento , Estresse Oxidativo , Envelhecimento/metabolismo , Animais , Humanos , Oxirredução , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
7.
Antioxidants (Basel) ; 12(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36670957

RESUMO

Short linear motifs (SLiMs) are evolutionarily conserved functional modules of proteins composed of 3 to 10 residues and involved in multiple cellular functions. Here, we performed a search for SLiMs that exert sequence similarity to two segments of alpha-fetoprotein (AFP), a major mammalian embryonic and cancer-associated protein. Biological activities of the peptides, LDSYQCT (AFP14-20) and EMTPVNPGV (GIP-9), have been previously confirmed under in vitro and in vivo conditions. In our study, we retrieved a vast array of proteins that contain SLiMs of interest from both prokaryotic and eukaryotic species, including viruses, bacteria, archaea, invertebrates, and vertebrates. Comprehensive Gene Ontology enrichment analysis showed that proteins from multiple functional classes, including enzymes, transcription factors, as well as those involved in signaling, cell cycle, and quality control, and ribosomal proteins were implicated in cellular adaptation to environmental stress conditions. These include response to oxidative and metabolic stress, hypoxia, DNA and RNA damage, protein degradation, as well as antimicrobial, antiviral, and immune response. Thus, our data enabled insights into the common functions of SLiMs evolutionary conserved across all taxonomic categories. These SLiMs can serve as important players in cellular adaptation to stress, which is crucial for cell functioning.

8.
Expert Rev Mol Diagn ; 21(11): 1147-1164, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34582293

RESUMO

Introduction: Hepatocellular carcinoma (HCC) is the most common primary liver cancer and the third cancer-related cause of death worldwide. In recent years, several systemic therapy drugs including sorafenib, lenvatinib, regorafenib, cabozantinib, ramucicurab, nivilumab, and pembrolizumab have been approved by FDA for advanced HCC. However, their insufficient efficacy, toxicity, and drug resistance require clinically applicable and validated predictive biomarkers.Areas covered: Our review covers the recent advancements in the identification of proteomic/genomic/epigenomic/transcriptomic biomarkers for predicting HCC treatment efficacy with the use of multi-kinase inhibitors (MKIs), CDK4/6 inhibitors, and immune checkpoint inhibitors (ICIs). Alpha-fetoprotein, des-carboxyprothrombin, vascular endothelial growth factor, angiopoietin-2, and dysregulated MTOR, VEGFR2, c-KIT, RAF1, PDGFRß have the potential of proteomic/genomic biomarkers for sorafenib treatment. Alanine aminotransferase, aspartate aminotransferase, and albumin-bilirubin grade can predict the efficacy of other MKIs. Rb, p16, and Ki-67, and genes involved in cell cycle regulation, CDK1-4, CCND1, CDKN1A, and CDKN2A have been proposed for CD4/6 inhibitors, while dysregulated TERT, CTNNB1, TP53 FGF19, and TP53 are found to be predictors for ICI efficacy.Expert opinion: There are still limited clinically applicable and validated predictive biomarkers to identify HCC patients who benefit from systemic therapy. Further prospective biomarker validation studies for HCC personalized systemic therapy are required.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Biomarcadores Tumorais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Proteômica
9.
Curr Pharm Des ; 27(2): 305-318, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33234092

RESUMO

BACKGROUND: Modern medicine has provided considerable knowledge of the pathophysiology of mental disorders at the body, systemic, organ and neurochemical levels of the biological organization of the body. Modern clinical diagnostics of depression have some problems, that is why psychiatric society makes use of diagnostics and taxonomy of different types of depression by implemention of modern molecular biomarkers in diagnostic procedures. But up to now, there are no reliable biomarkers of major depressive disorder (MDD) and other types of depression. OBJECTIVE: The purpose of this review is to find fundamentals in pathological mechanisms of depression, which could be a basis for development of molecular and genetic biomarkers, being the most feasible for clinical use. METHOD: This review summarizes the published data using PubMed, Science Direct, Google Scholar and Scopus. RESULTS: In this review, we summarized and discussed findings in molecular biology, genetics, neuroplasticity, neurotransmitters, and neuroimaging that could increase our understanding of the biological foundations of depression and show new directions for the development of reliable biomarkers. We did not find any molecular and genetic biomarker approved for the clinic. But the Genome-Wide Association Study method promises some progress in the development of biomarkers based on SNP in the future. Epigenetic factors also are a promising target for biomarkers. We have found some differences in the etiology of different types of atypical and melancholic depression. This knowledge could be the basis for development of biomarkers for clinical practice in diagnosis, prognosis and selection of treatment. CONCLUSION: Depression is not a monoetiological disease. Many pathological mechanisms are involved in depression, thus up to now, there is no approved and reliable biomarker for diagnosis, prognosis and correction of treatment of depression. The structural and functional complexity of the brain, the lack of invasive technology, poor correlations between genetic and clinical manifestation of depression, imperfect psychiatric classification and taxonomy of subtypes of disease are the main causes of this situation. One of the possible ways to come over this situation can be to pay attention to the trigger mechanism of disease and its subtypes. Researchers and clinicians should focus their efforts on searching the trigger mechanism of depression and different types of it . HPA axis can be a candidate for such trigger in depression caused by stress, because it influences the main branches of disease: neuroinflammation, activity of biogenic amines, oxidative and nitrosative stress, epigenetic factors, metabolomics, etc. But before we shall find any trigger mechanism, we need to create complex biomarkers reflecting genetic, epigenetic, metabolomics and other pathological changes in different types of depression. Recently the most encouraging results have been obtained from genetics and neuroimaging. Continuing research in these areas should be forced by using computational, statistical and systems biology approaches, which can allow to obtain more knowledge about the neurobiology of depression. In order to obtain clinically useful tests, search for biomarkers should use appropriate research methodologies with increasing samples and identifying more homogeneous groups of depressed patients.


Assuntos
Transtorno Depressivo Maior , Biomarcadores , Depressão , Transtorno Depressivo Maior/diagnóstico , Transtorno Depressivo Maior/genética , Estudo de Associação Genômica Ampla , Humanos , Sistema Hipotálamo-Hipofisário , Biologia Molecular , Sistema Hipófise-Suprarrenal
10.
Cent Nerv Syst Agents Med Chem ; 19(3): 215-222, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31267880

RESUMO

BACKGROUND: Retinopathy of Prematurity (ROP) is a potentially blinding disorder that commonly afflicts premature infants who are born prior to 31weeks of gestation or with a body weight less than 1250 grams (about 2.75 pounds). Another risk factor is excessive oxygen in incubators, which can lead to blindness. A compounding factor is that survival rates for premature infants are rising with concomitantly more cases of ROP. We have reported an unsuspected intrinsic property of melanin to dissociate water. This capability can be considered an alternative treatment option for adult and neonatal diseases. It is known that exogenous surfactant administration suppresses bronchopulmonary dysplasia and consequent death, randomized, controlled trials with various respiratory interventions did not show any significant reductions in morbidity and mortality rates. During a descriptive study about the three leading causes of blindness in the world, the ability of melanin to transform light energy into chemical energy through the dissociation of water molecule was unraveled. Initially, during 2 or 3 years; we tried to link together our findings with the widely accepted metabolic pathways already described in molecular pathway databases, which have been developed to collect and organize the current knowledge on metabolism scattered across a multitude of scientific evidence. OBSERVATIONS: The current report demonstrates the main problems that afflict premature babies with an emphasis on the growth of abnormal vessels in the retina, the explanation for which is unknown until date. We also reported a case of a baby who suffered digestive and respiratory problems with a brain haemorrhage that was successfully treated by laser photocoagulation. We hypothesise that most likely this effect was due to the melanin level and melanin itself produces oxygen via dissociating with water molecules. CONCLUSION: We postulate that the intrinsic effect of melanin may easily convert visible and invisible light into chemical energy via a water dissociation reaction similar to the one in plant's chlorophyll, and markedly elevated with diagnosis and treatment of the complications related to premature babies.


Assuntos
Lactente Extremamente Prematuro/metabolismo , Melaninas/metabolismo , Oxigênio/metabolismo , Retinopatia da Prematuridade/tratamento farmacológico , Retinopatia da Prematuridade/metabolismo , Água/metabolismo , Pré-Escolar , Humanos , Recém-Nascido , Masculino , Melaninas/uso terapêutico , Oxigênio/química , Resultado do Tratamento , Água/química
11.
Int J Mol Sci ; 20(9)2019 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-31035445

RESUMO

Zinc is one of the most important essential trace elements. It is involved in more than 300 enzyme systems and is an indispensable participant in many biochemical processes. Zinc deficiency causes a number of disorders in the human body, the main ones being the delay of growth and puberty, immune disorders, and cognitive dysfunctions. There are over two billion people in the world suffering from zinc deficiency conditions. Acyzol, a zinc-containing medicine, developed as an antidote against carbon monoxide poisoning, demonstrates a wide range of pharmacological activities: Anti-inflammatory, reparative, detoxifying, immunomodulatory, bacteriostatic, hepatoprotective, adaptogenic, antioxidant, antihypoxic, and cardioprotective. The presence of zinc in the composition of Acyzol suggests the potential of the drug in the treatment and prevention of zinc deficiency conditions, such as Prasad's disease, immune system pathology, alopecia, allergodermatoses, prostate dysfunction, psoriasis, stomatitis, periodontitis, and delayed mental and physical development in children. Currently, the efficiency of Acyzol in the cases of zinc deficiency is shown in a large number of experimental studies. So, Acyzol can be used as a highly effective drug for pharmacologic therapy of a wide range of diseases and conditions and it opens up new perspectives in the treatment and prevention of zinc deficiency conditions.


Assuntos
Distúrbios Nutricionais/tratamento farmacológico , Distúrbios Nutricionais/etiologia , Oligoelementos/deficiência , Acetato de Zinco/uso terapêutico , Zinco/deficiência , Animais , Estudos Clínicos como Assunto , Avaliação Pré-Clínica de Medicamentos , Humanos , Imidazóis/química , Camundongos , Distúrbios Nutricionais/diagnóstico , Distúrbios Nutricionais/prevenção & controle , Resultado do Tratamento , Acetato de Zinco/química , Acetato de Zinco/farmacologia
12.
Curr Top Med Chem ; 19(6): 394-412, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30834839

RESUMO

BACKGROUND: Resistance toward chemotherapeutics is one of the main obstacles on the way to effective cancer treatment. Personalization of chemotherapy could improve clinical outcome. However, despite preclinical significance, most of the potential markers have failed to reach clinical practice partially due to the inability of numerous studies to estimate the marker's impact on resistance properly. OBJECTIVE: The analysis of drug resistance mechanisms to chemotherapy in cancer cells, and the proposal of study design to identify bona fide markers. METHODS: A review of relevant papers in the field. A PubMed search with relevant keywords was used to gather the data. An example of a search request: drug resistance AND cancer AND paclitaxel. RESULTS: We have described a number of drug resistance mechanisms to various chemotherapeutics, as well as markers to underlie the phenomenon. We also proposed a model of a rational-designed study, which could be useful in determining the most promising potential biomarkers. CONCLUSION: Taking into account the most reasonable biomarkers should dramatically improve clinical outcome by choosing the suitable treatment regimens. However, determining the leading biomarkers, as well as validating of the model, is a work for further investigations.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Mapeamento de Interação de Proteínas , Biomarcadores Tumorais/análise , Humanos , Neoplasias/metabolismo , Neoplasias/patologia
13.
Front Pharmacol ; 10: 1612, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32116664

RESUMO

The levels of the astrocyte markers (GFAP, S100B) were increased unevenly in patients with schizophrenia. Reactive astrogliosis was found in approximately 70% of patients with schizophrenia. The astrocytes play a major role in etiology and pathogenesis of schizophrenia. Astrocytes produce the components that altered in schizophrenia extracellular matrix system which are involved in inflammation, functioning of interneurons, glio-, and neurotransmitter system, especially glutamate system. Astrocytes activate the interneurons through glutamate release and ATP. Decreased expression of astrocyte glutamate transporters was observed in patients with schizophrenia. Astrocytes influence on N-methyl-d-aspartate (NMDA) receptors via D-serine, an agonist of the glycine-binding site of NMDA receptors, and kynurenic acid, an endogenous antagonist. NMDA receptors, on its turn, control the impulses of dopamine neurons. Therefore following theories of schizophrenia are proposed. They are a) activation of astrocytes for neuroinflammation, b) glutamate and dopamine theory, as astrocyte products control the activity of NMDA receptors, which influence on the dopamine neurons.

14.
Curr Protein Pept Sci ; 19(9): 924-934, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28875851

RESUMO

Urotensin II (UT II) is an important factor of cellular homeostasis. This regulatory peptide is involved in the pathophysiology of many disorders. For example, it plays an important role in the pathogenesis of acute and chronic diseases, stressful and adaptive reactions of the body, in the development of cardiovascular pathologies, metabolic syndrome, inflammation, liver cirrhosis, renal failure, diabetic nephropathy, reproductive dysfunction, progression of psychosomatic, psychoendocrinal and psychiatric disorders. In this concern, the involvement of UT II in the pathophysiology of many processes determines the perspectives for the development of blockers of urotensin receptors for the treatment of the aforementioned diseases. It is important that even today this kind of perspective is feasible due to the synthesis of a series of GPR14 blockers. The objective of this review is to discuss current molecular mechanisms of biological activity, regulatory functions of UT II, its role in the pathogenesis of different nosologies, as well as analysis of the possible routes of exposure to GPR14 as potential therapeutic targets.


Assuntos
Urotensinas/metabolismo , Animais , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/metabolismo , Tratamento Farmacológico , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Homeostase , Humanos , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Terapia de Alvo Molecular , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Insuficiência Renal/tratamento farmacológico , Insuficiência Renal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...